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Temat wystgpienia:
Jak skutecznie zapewnic energie szybkim uktadom
cyfrowym w czasie przetgczania, czyli co nieco o
odsprzeganiu zasilania.
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Strumien magnetyczny towarzyszacy
przewodnikowi z prgdem




Wektor indukcji magnetycznej dla
prostolinijnego przewodnika

B (stabe) v



Wizualizacja 3D przewodnika z pragdem
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Kierunek pradu: Prad I ptynie z géry na dot.

Kierunek pola E (niebieskie okregi): Zwrot okregéw jest
zgodny z regutg prawej dtoni.

Kierunek potencjalu magnetycznego A (czarne strzatki):
Wektory potencjatu A sg skierowane w dét, réwnolegle do
przewodnika z prgdem.,

Relacja E i A : Linie pola magnetycznego E (okregi) owijajg sie
wokot wektoréw potencjatu magnetycznego A (pionowe linie),
co jest zgodne z definicjg E=VxA (indukcja jest wirowoscia
potencjatu).

Wartos$¢ indukcji magnetycznej E : warto$¢ maleje wraz z
odlegtoscig od przewodnika (im dalej od centrum, tym mniejsza
wartosc).

Wartos¢ potencjatu magnetycznego A : wartos$c ta rowniez
maleje wraz z odlegtoscig od przewodnika (im dalej od centrum,
tym mniejsza wartosc).



Czesciowa indukcyjnosc¢ wtasna

przewodnik CzesSciowa indukcyjnos¢ wiasna odcinka przewodnika to
/ strumien magnetyczny ¢ przenikajacy przez pole powierzchni
miedzy odcinkiem przewodnika a nieskonczonoscig, podzielony
przez natezenie prgdu ptyngcego w tym odcinku.

¢P uot’ o [in2¢-1]

odcinek przewodnika

A - wektorowy potencjat magnetyczny
Lr- czeSciowa indukcyjnosé wiasna

Mo - przenikalno$¢ magnetyczna prozni
¢ - dtugos$c¢ przewodnika

r1 - promien przewodnika

I- prad ptynacy przez przewodnik



Czesciowa indukcyjnos¢ wzajemna

Czes$ciowa indukcyjnosé wzajemna miedzy
dwoma odcinkami przewodnikéw to stosunek
strumienia magnetycznego ¢ przenikajgcego
przez powierzchnie miedzy drugim odcinkiem
przewodnika, a nieskorficzonoscia, podzielony
przez natezenie pradu In ptyngcym w pierwszym
odcinku przewodnika.

:> oo Dlawarunku, gdy D << £ wyniesie:

LM12—¢12— poe [ln ZE 1]

I POWIERZCHNIA

odcinek przewodnika_2

odcinek przewodnika_1

Lm12 - czeSciowa indukcyjnosé wzajemna

Mo - przenikalno$¢ magnetyczna proézni

I1 - prad ptynacy przez przewodnik_1

¢ - dtugosc przewodnika, przez ktéry ptynie prad I
D - odlegto$¢ miedzy przewodnikami



Czesciowa indukcyjnosc segmentu dla
pradu ptyngcego w tym samym kierunku
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Wz6r dla réznych indukcyjnosci sktadowych:

L= LeiLpo—Ln’
> Lei+Lp2=2Lw

Wz6r dla identycznych indukcyjnosci sktadowych:

P_Oe[ 2L 1n2t_ ]
L= Lp+Lw _ PAL In r +In D 2

2 2
Ls - czeSciowa indukcyjnos¢ segmentu
Lp1,Lpr2 - indukcyjnosci wtasne przewodnikéw
Lm - indukcyjnos¢ wzajemna
o - przenikalnos$¢ magnetyczna prézni
I - prad ptynacy przez przewodniki
0142 - dtugosci przewodnikdw, przez ktére ptynie prad I
r1,rz - promienie przewodnikéw
D - odlegtos¢ miedzy przewodnikami




Czesciowa indukcyjnosc segmentu dla
pradu ptynacego w przeciwnych kierunkach

I
1 A > :H _
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Ls=(Lp11—Lm21)+(Lp22—Lm12)
Lr11=Lr22 Oraz Lwiz=Lwmaz1)

LS=2(LP11—LM12)= H_oté [In er -1- In%ﬂ]:(p%é)ln%

Ls - czeSciowa indukcyjnosé segmentu

Lexx - indukcyjnosci witasne przewodnikéw

Lmxx - inukcyjnosci wzajemne

o - przenikalnosé magnetyczna prézni

I - prad ptynacy przez przewodniki

1,02 - dtugosci przewodnikdw, przez ktére ptynie prad I
r1,r2 - promienie przewodnikow

D - odlegtos¢ miedzy przewodnikami



Czesciowa indukcyjnosc¢ segmentu dla
wybranego przewodnika
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Ls=(Lr22—Lmiz2)= “d [In 21 -In&- 26

Ls - czeSciowa indukcyjnosc¢ segmentu

Lp22 - indukcyjnosc wiasna przewodnika_2

Lm12 - indukcyjnosé wzajemna przewodnikow 1i 2

Lo - przenikalnos¢ magnetyczna prozni

I - prad ptynacy przez przewodniki

01,42 - dtugosci przewodnikdw, przez ktore ptynie prad I
r1,r2 - promienie przewodnikow

D - odlegtos¢ miedzy przewodnikami



Indukcyjnosc petli prostokatnej

Jesli petla sktada sie z wielu odcinkdw, a czesciowe indukcyjnosci - zaréwno wilasne, jak i
wzajemne kazdego z odcinkéw zostang zsumowane, wynikiem bedzie indukcyjnos¢ petli.

Lioor=(Lp11=Lwmz1)+(Lr2z—Lmaz)+(Lezs—Lumiz)+(Lraa—Lr2s) +
r
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Lioor - indukcyjnosc petli

Lexc - indukcyjnosci wiasne przewodnikdw
Luxx - indukcyjnosci wzajemne

I - prad ptynacy przez przewodniki

r- promien przewodnika

w=szerokos¢ prostokgta tworzgcego petle
h=wysokos¢ prostokgta tworzgcego petle
Ho=przenikalnos¢ magnetyczna prozni



Realne petle indukcyjne majg bardziej
skomplikowane ksztaftty...

a) Kondensator SMD

TOP

ML1
ML2

b) Kondensator SMD

SIG TOP
SND iz 7
VCC gy F et i PARRE M Lz




Rozktad pola elektromagnetycznego dla
sciezki mikropaskowej




gestosc pradu

Gestosc¢ pradu dla sciezki mikropaskowej
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Indukcyjnosc¢ danego segmentu moze by¢
zroznicowana, gdy zmienia sie efektywna

powierzchnia przez ktérg ptynie prad




Dystrybucja energii ze zrodta do
komponentu cyfrowego
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System dystrybucji energii — sie¢c PDN
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Szacowanie pojemnosci kondensatora
odsprzegajgcego

5 Czas narastania tr danego zbocza to
. a . “’ szybkosc z jakg zmienia sie napiecie na
& jego wyjsciu. Wiekszos¢ obcigzert ma
charakter pojemnosciowy. W zwigzku z
czym mozna powigzac prad docierajgcy
do obcigzenia z szybkoscig zmian
napiecia przy zmianie stanu logicznego.

_c AV
I_C At

: g wynosi 50pF, czas narastania tr przebiegu
“ § Wyjsciowego to 3ns, a zmiana napiecia to
: ‘%’q 5V. Przy tych parametrach prad, ktéry

bl przetaduje pojemno$¢ pasozytniczg
M wynosi 83mA.
\Q Gdyby jednoczes$nie 8 wyjs¢ przetgczyto
* sie na stan przeciwny, sumaryczny prad
wynidstby 664maA.
Prad ten przeptywajgc przez nieunikniong indukcyjnos¢, ktorejs z gatezi zasilajgcych spowoduje zmiane jej
potencjatu, przyktadowo o 0,5V. Kondensator odsprzegajacy musi skompensowac te strate i kompensacja
ta musi wystgpic dla tego przyktadu w czasie 3ns. Zatem minimalna jego pojemnos¢ musi wynies¢ 4nF.

Jednak w rzeczywistosci tak prosto nie jest, C=1 At
bo nie uwzglednilismy mndéstwa czynnikéw! | |~ ~ AV

\i\,\tk Przyktadowo, pojemnos¢ obigzenia




Dwa rodzaje praddéw przejsciowych w
czasie przetaczania funktora logicznego




Kondensator odsprzegajacy w akcji, prad
przejsciowy — uproszczona wizualizacja

Vgc Vgc
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Kondensator odsprzegajacy w akcji, prad
dotadowujgcy — uproszczona wizualizacja
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Prad powrotny moze ptynac przez

kondensator

odsprzegajacy

ptaszczyzne GND |ub Vcc

Vcc
O

| | wylewka Vcc |

B

Vcc
O

_ e

ﬁ

wylewka GND

pojemnosci
pasozytnicze



Prad powrotny przeptywajacy przez
ptaszczyzne GND przy zmianie stanuzOna 1l
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Prad powrotny przeptywajacy przez
ptaszczyzne GND przy zmianie stanuz 1 na 0

ﬁﬂ; | 1
| el M




Prad powrotny przeptywajacy przez
ptaszczyzne Vcc przy zmianie stanuzOna 1l
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Prad powrotny przeptywajacy przez
ptaszczyzne Vcc przy zmianie stanuz 1 na 0O
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Czterowarstwowa ptyta testowa 25cmx25cm

QQQ0}+0000
Q00GL0000

Ty
ro_ie i b5
geri21

A

000 |
woor Y @
= =he
ws0h ooo
wo0E oon
ooo e
ugz 200

T4F569N

S

o
w301 000

o
-

W

[

il

)

0
i

1
el

)
)
L)
-
3.
©
R 8
L)
1

Q0000000

-
E 00000000

| g g i e b

ar
Yaulisy) (03 o a
w305 (01O G
W3Sy (03 O
w30y 03104
W3GE 07+ O
W30E 0T OW £
w35z 10730 ar
w30z ‘070 ar
WwSGT 03 0 ar
w301 O} O ar
eew-] ar

LYYy
T ousy
T4ACI4P

TAFS6ON

=

]

@z

(g GATr] €152
15\._ “ﬂd@-: ¢




Czterowarstwowe ptyty testowe 10cmx10cm
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Realny kondensator to nie tylko czysta pojemnosc,
to szeregowy obwod rezonansowy...
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ZLvac whasciwosci:
gdy jest wigczone szeregowo to dla DC-Z=min, a dla AC-Z=o0bwdéd RLC

gdy jest wigczone rownolegle to dla DC-Z=max, a dla AC-Z=obwod RLC



Impedancja kondensatora THT 100nF przy
dtugosci wyprowadzen 3cm oraz 3mm

000000
DDDDDDD



Pojemnosc¢ miedzyptaszczyznowa ptyty PCB
25cmx25cm (26nF)

521 |Z| shunt
130.0

69.91

37.59 m

10.87

5,845 /

3.143 -

1.6590

208.8m
438.7m
266,0m

143.0m

41.36m
22.24m
11.96m
6.431m
3.458m

1.860m

1.000m
S0k 92k 170k 313k 576k 1062k 1957 3807 6.65M 12.25M 22.57M 41.59M 76.6M 141.2M 260.2M 479.5M 883.5M 1628.1M 3000.0M



Pojemnosc¢ miedzyptaszczyznowa ptyty PCB
10cmx10cm (2,7nF)

521 |Z| shunt
1.250k

873.6
362.9
195.6
105.4
56.78
30.50
16.49

8.884
2611

758.1m

408. 5m

118.6m
63.92m
34.44m

18.56m

10.00m
S0k 8%k 150k 260k 452k 783k 1357k 2353 4079k 7.0M 12.26M 21.25M 36.84M 63.9M 110.7M 191.9M 332.7M 576.8M 1000.0M



Impedancja sieci kondensatoréw potgczonych
rownolegle (sumarycznie 100nF)

C_all=100nF —
ESL=15nH —

1&/
1

IMPEDANCJA (Q)

Il
Il

\ \\/ //

W

CZESTOTLIWOSC (MHz)




Impedancja sieci kondensatoréw potgczonych

rownolegle (sumarycznie 1uF)

C_all=1000nF
ESL=15nH

IMPEDANCJA (Q)

N
LA

CZESTOTLIWOSC (MHz)




Zaleznosci w tgczeniu rownolegtym identycznych
sieci RLC

ESL <ESL <ESL <ESL <ESL <ESL <ESL <ESL ESL_ALL=EIS1—L

ESR

ESR | |[ESR | [ESR | [ESR | |ESR | |ESR | |ESR | |ESR ESR_ALL==3~

C C C C C C C C C_ALL=nC




Impedancja trzech potgczonych rownolegle
kondensatorow SMD 0603 47uF+PM 2,7nF

DDDDDD
DDDDDDD



Impedancja dwoch rownolegle potgczonych
kondensatoréw o roznych wartosciach

IMPEDANCJA (Q)

100nF+15nH+10nF+15nN

H

/

1 \

/

/
V4

- 7 TOTAL

CZESTOTLIWOSC (MHz)




Impedancja kilku rownolegle potgczonych
kondensatoréw o roznych wartosciach

~ 1100nF+15nH+10nF+15nH+1nF+15nH+100pF+15nH

f
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N /“/
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IMPEDANCJA (Q)
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N/

CZESTOTLIWOSC (MHz)




Impedancja kondensatorow:
SMD 1nF_0805+10nF_0805+100nF_0603 oraz PM 2,7nF

DDDDDD



Impedancja kondensatorow rozproszonych po catej PCB:
SMD 1nF _0805+10nF _0805+100nF 0603 oraz PM 2,7nF

DDDDDD



Impedancja kondensatorow THT rozproszonych po catej
PCB, dtugie vs krotkie wyprowadzenia:
10pF+100pF+1nF+10nF+100nF oraz PM 2,7nF

DDDDDD



Aktywnos¢ w dziedzinie czestotliwosci, sktadowych
(ESR, ESL, C) w trzech sieciach RLC potgczonych rownolegle




Impedancja kondensatorow:

10uF_0603+1uF_0603+10nF_0805+100nF_THT oraz PM 2,7nF
widoczny rezonans ptaszczyzn zasilajgcych

BBBBBB

DDDDDD



Rezonans ptaszczyzn zasilania w powiekszeniu

521 |z| shunt
40.00

3415
29.17
24.91
21.28
18.17

.
15.52_~

13.25

11.32

o654
\
8.278 \ \
7.070
6,037
\

5.156
i

3.760

3.211
2742

2.342
734.9M 733 ™ 857.2M 925.3M 1000.0M

2.000
250.0M 270.0M 231.6M 315.0M 340.2M 3674 396.5M 428.6M 462.5M 500.0M 340.0M 583.3M 630.0M 580,44



Impedancja kilku rownolegle potgczonych kondensatorow o
roznych wartosciach z roznymi wartosciami ESL
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Impedancja kilku rownolegle potgczonych kondensatorow o

roznych wartosciach z roznymi wartosciami ESR

IMPEDANCJA (Q)

N

C1=100nF+30nH
C2=10nF+30nH
NG C1=1nF+30nH

C4=100pF+30nH
C5=10pF+30nH

e

~———— ESR 0,100 \

ESR 0,250
ESR 0,50Q
ESR 1,00Q

01

1 CZESTOTLIWOSC (MHz) 10




Minimalizacja indukcyjnosci petli dzieki odpowiedniemu
montazowi kondensatora odsprzegajgcego.




Dwa rodzaje podtgczenia kondensatora odsprzegajgcego do

cyfrowego uktadu scalonego, ktory sposob lepszy?

Vcc Vcc

| |®




Przy tej niepolecanej, sztucznie wydtuzonej petli,
sposOb umieszczenia kondensatora
odsprzegajgcego nie ma zadnego znaczenia

Vcc Vcc Vcc




Efektywnos¢ pojemnosci miedzyptaszczyznowej w zaleznosci
od predkosci propagacji energii EM w dielektryku




Zjawisko odbicia od ptaszczyzn zasilajgcych przy
jednoczesnej zmianie w szybkim uktadzie
cyfrowym duzej ilosci wyjs¢ na stan przeciwny

a) GROUND BOUNCE b) Vcc BOUNCE
ng ng
_\_ I—E % I I—E v—» w
— obwo.dy ‘ L v, — ObWO.dy L~ L Ve
sterujace N sterujace
(F (

AV I

I='CLﬁ_¥ L. -\/- I::CL I= CLE L A— —
Al

Vee=Lc+Le A Ves =LV+LPE

At




Schemat testowego uktadu do badania odbic od
ptaszczyzn zasilajgcych

a) GROUND BOUNCE b) Vcc BOUNCE
e
A\
L | 1 Ve
T i \Va o e i
. T _\I\ 1
o\ S
L\ s
30 i
I S
SESY = =/
N = +/



Gtownym powodem odbi¢ od ptaszczyzn zasilajgcych
jest zawsze zbyt duza indukcyjnosé petli pradowych




Intensywnosc¢ odbic¢ od ptaszczyzn zasilajgcych, scisle
zalezy od rodzaju obcigzenia wyjsc

b)




Uproszczona budowa inwertera CMOS
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Bardziej szczegotowa analiza GROUNDBOUNCE na
przyktadzie wielokrotnego bufora CMOS

a) GROUND BOUNCE PIERWOTNY
Lv

B kaahEs
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b) GROUND BOUNCE WTORNY
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Bardziej szczegotowa analiza VccBOUNCE na
przyktadzie wielokrotnego bufora CMOS

a) Vec BOUNCE PIERWOTNY
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Minimalizacja efektu odbi¢ od ptaszczyzn zasilajgcych,
dzieki powieleniu pinéw Vcc i GND oraz odpowiednim
rozmieszczeniu wejsc i wyjsc

mmmmmmmmmmmmmmmmmmmmmmmmmmmm
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Negatywny efekt zbyt nadmiernych odbic¢ od ptaszczyzn

zasilajgcych
— DI Ql — o
— ™ Q2 —
<€ o 13 Q3 |—
'E — D4 Q4 —
A —— 5 Q5 — ¢+—— CLR Q o—
*® Do Q6 —
— D7 Q7 — O PRE
N DS Q8 CLK
CLK_IN CLK OouT D Q ——
=i S ouT
74ACT541
DATA \

CLK_IN —

CLK_ OUT— —/\/—

OouT—-




GROUNDBOUNCE — ciche wejscie = L i najdalej oddalone
od pinu GND, obcigzenie — pojemnosc skupiona

CHi~ 169mY

CHL/8gany
M Pos:62,80ns




GROUNDBOUNCE — ciche wejscie = L i najblizej pinu GND,
obcigzenie — pojemnosc skupiona

@<ioHz

CHL/S@Bny
M Posi62,60ns

CHiw 166m




VccBOUNCE - ciche wejscie = H i najdalej oddalone
od pinu Vcc, obcigzenie — pojemnosc skupiona

CHlo 166my

M Pos:62,06ns



VccBOUNCE - ciche wejscie = H i najblizej pinu Vcc,
obcigzenie — pojemnosc skupiona

B<ipHz

1116.6ns  CHL78@8nU
M Pos:62.60ns

CHl~ 188mY




GROUNDBOUNCE — ciche wejscie = L i najdalej oddalone
od pinu GND, obcigzenie — linia transmisyjna z szer. termin.

B<ifHz
Chiw 1680V M 10.8ns CHI 78680V
M Pasi82.60ns




GROUNDBOUNCE — ciche wejscie = L i najblizej pinu GND,
obcigzenie — linia transmisyjna z szer. termin.

@<1pHz

| CHi~ 100mY : : 116.8ns BT —
1 Pos:-37.60ns




VccBOUNCE - ciche wejscie = H i najdalej oddalone
od pinu Vcc, obcigzenie — linia transmisyjna z szer. termin.

B <1BHz

CHi~ 166mY M 18.6ns CH1 £4.68mU
M Pos:51,268ns




VccBOUNCE - ciche wejscie = H i najblizej pinu Vcc,
obcigzenie — linia transmisyjna z szer. termin.

f ‘ B<10Hz
| CHlv 106U ’  Miagns  cHLsdgeny
M Pos:51.26ns




Przebieg z generatora 10MHz na wyjsciu bufora 74ACT541 THT
(bez podstawki) najdalej od pinu GND. Pozostate 7 pindw wejsciowych
przytgczonych do masy. Odsprzeganie: 3x47uF_0603
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Przebieg z generatora 10MHz na wyjsciu bufora 74ACT541 THT
(z podstawkg) najdalej od pinu GND. Pozostate 7 pindw wejsciowych
przytaczonych do masy. Odsprzeganie: 2x22uF_0603+100nF_THT
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Przebieg z generatora 10MHz na wyjsciu bufora 74ACT541 THT
(z podstawkg) najdalej od pinu GND. Pozostate 7 pindw wejsciowych
przytgczonych do masy. Odsprzeganie: 100nF_THT w gtdwnej gatezi
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Badanie pindw zasilajgcych najdalszego uktadu 74ACT14 przy aktywnym
generatorze 10MHz podtgczonym do wejs¢ innych uktadow.
Odsprzeganie 74ACT14: 2x22uF_0603+100nF_THT
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Badanie pindw zasilajgcych najdalszego uktadu 74ACT14 przy aktywnym
generatorze 10MHz podtgczonym do wejs¢ innych uktadow.
Odsprzeganie 74ACT14: brak (tylko gtéwna gatgz 100nF_THT)
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